Муниципальное Бюджетное образовательное учреждение Ключевская Средняя Общеобразовательная Школа

Индивидуальный проект

Тема: Влияние выхлопных газов на окружающую среду

Автор проекта:

Ма-Ван-Дэ Константин Максимович

Руководитель проекта: Заиграева

Наталья Васильевна

с. Татарский ключ, 2023 г.

Содержание

Глава I Введение
Глава II Теоретическая часть
Глава III Практическая часть
1. Методика отбора проб выхлопных газов автомобилей 5
2. Определение мутности и результаты исследований
3. Органолептический анализ и химический состав исследуемых
растворов
4. Биоиндикационное тестирование проб выхлопных газов10
5. Отбор проб загрязненного воздуха с помощью газоанализа-
тора11
Глава IV Заключение
Список использованной литературы
Приложение

Введение

Актуальность исследования

В настоящее время владельцы автомобилей даже не задумываются, что выхлопные трубы их машин выпускают в воздух много вредных веществ.

В данном исследовательском проекте затронут вопрос влияния выхлопных газов на окружающую среду и здоровье человека и методы исследования, и решения данной проблемы.

Цель: изучить влияние загрязнения воздуха выхлопными газами на окружающую среду и здоровье человека.

Задачи:

- 1. Выяснить причины загрязнения воздуха автомобильным транспортом.
- 2. Определить виды загрязняющих веществ в выбросах автомобильного транспорта.
- 3. Изучить влияние отработанных газов на здоровье человека.
- 4. Разработать систему мероприятий по снижению загрязнения атмосферного воздуха

Объект исследования: процесс загрязнения воздуха выхлопными газами.

Предмет исследования: Автотранспортный цех ООО «Горная компания» находящийся на расстоянии 2 км от села.

Гипотеза исследования: загрязнение воздуха и почвы выхлопными газами автотранспорта отрицательно влияет на окружающую среду и здоровье человека.

Глава II. Теоретическая часть

Выхлопные газы (или отработавшие газы) являются неоднородной смесью продуктов полного и неполного сгорания топлива. Они состоят из различных газообразных веществ, большинство из которых токсичны.

Выхлопные газы негативно влияют на:

- ✓ Придорожное пространство (деревья, кустарники, растущие вдоль дорог);
- ✓ Дыхательную систему животных и человека;
- ✓ Химический состав почвы и воды (увеличивается концентрация тяжёлых металлов в почве и воде);
- ✓ Уровень кислотности атмосферных осадков (уровень кислотности повышается);

В течение суток один автомобиль может выбрасывать до 1 кг. Выхлопных газов, в состав которых входят:

- ✓ Продукты неполного сгорания жидкого топлива (оксид углерода, сажа, углеводороды и т.д.);
- ✓ Продукты окисления (различные оксиды азота и другие соединения);
- ✓ Полициклические ароматические углеводороды (в том числе бензапирен);

Длительное воздействие выхлопных газов на человека:

- ✓ Вызывает раздражение слизистых оболочек глаз и дыхательных путей;
- ✓ Отрицательно сказывается на нервной и сердечной сосудистой системах;
- ✓ Провоцирует головную боль, слабость, раздражение, тошноту, нарушение сна;
- ✓ Повышает риск возникновения бронхиальной астмы, экземы;
- ✓ Наносит вред головному мозгу, что может привести к развитию Альцгеймера.

Газы автотранспорта остаются в приземном слое атмосферы, что затрудняет их рассеивание. Узкие улицы и высокие здания также способствуют задерживанию токсических соединений выхлопных газов в зоне дыхания пешеходов. В состав выхлопных газов автотранспорта входит более 200 компонентов, тогда как нормируются из них лишь немногие (дымность, оксиды углерода и азота, углеводороды). Состав выхлопных газов зависит от ряда факторов: типа двигателя (карбюраторный, дизельный), режима его работы и нагрузки, технического состояния и качества топлива. Выхлопные газы помимо углеводородов, входящих в состав топлива, содержат продукты неполного сгорания, такие как ацителен, олефины и карбонильные соединения. Большое количество вредных примесей поступает в окружающий воздух, когда двигатель работает на «холостом» ходу- при кратковременных остановках и на перекрестках.

При сжигании 1 л. бензина в воздух поступает 200-400 мг свинца, входящего в состав антиде-тонационной присадки. Транспорт является также источником пыли, возникающей от разрушения дорожных покрытий и истирания шин. Так как состав выхлопных газов зависит от смеси топлива и момента зажигания, он также будет зависеть и от характера вождения. Для достижения наибольшей мощности требуется смеси с 10-15%-ым обогащением, в то время как наиболее экономичной является скорость при несколько меньшем обогащении топлива. Для большинства двигателей на холостом ходу требуются обогащенные смеси, и продукты горения не полностью выбрасываются из цилиндра. При ускорении движения давление в топливной системе снижается и топливо конденсируется на стенках коллектора. Для предотвращения обеднения топливной системы

служит карбюратор, обеспечивающий подачу большего количества топливапри ускорении движения. При снижении скорости с помощью закрытого дросселя вакуум в коллекторе увеличивается, снижается подсос воздуха и чрезмерно возрастает насыщенность смеси. При таких колебаниях выбросы в значительной степени зависят от требований, предъявляемых к двигателю.

Транспортные выхлопы - одна из причин парникового эффекта. Это процесс ускоряется и представляет реальную угрозу экологической обстановке.

Статистика гласит, что одна легковушка выделяет за сутки в окружающею среду в среднем до одного килограмма канцерогенов, токсинов и технических компонентов. При этом вредные вещества аккумулируются и могут содержаться в атмосфере до 5-6 лет. Они могут навредить и окружающей среде, и человеку, и растениям, и животным.

Глава III.Практическая часть

1. Методика отбора проб выхлопных газов автомобилей.

Для эксперимента были выбраны 2 автомобиля, работающих на бензиновом и дизельном топливе. При проведении эксперимента не учитывалась марка автомобиля. Исследование направлено на определение токсичности продуктов сгорания ДВС.

Отбор проб проводился следующим образом: в литровую банку налили 0,5 л. дистиллированной воды, опустили в нее шланг от выхлопной трубы автомобиля и пропускали выхлопные газы в течение 20 минут.

2. Определение мутности и результаты исследования Мутность- обратная величина степени прозрачности воды. Пробы выхлопных газов № 2 (бензиновый двигатель) и № 3 (дизельный двигатель) сравнивали с эталонным раствором № 1 (дистиллированная вода). Показатели мутности образцов №1 и №2 примерно одинаковы и скорее всего зависят от технического состояния автомобиля.

Таблица №1

Показатели	№ 1	Раствор № 2	Раствор № 3
	Дистиллированная	(бензиновый	(дизельный
	вода	двигатель)	двигатель)
Высота столбца	20 см	20 см	20 см
воды в колбе			
Прозрачность	Прозрачное	Мутное	мутное
(мутность)			

3. Органолептический анализ и химический состав исследуемых растворов. Органолептический метод исследования означает определение качества товара при помощи органов чувств — зрительных, вкусовых, обонятельных осязательных, а иногда слуховых.

Исследуемые растворы были подвергнуты проверке запаха, цвета. также были выдвинуты предположения касаемо загрязняющего вещества, содержащегося в опытных образцах. По результатам органолептического анализа был выявлен характерный запах нефтепродуктов; наличие радужной пленки. Содержание основных химических веществ в опытных образцах меняется в зависимости от типа двигателя: бензиновый или дизельный. При работе двигателя на этилированном бензине в составе присутствует -свинец, а у двигателей, работающих на дизельном топливе —сажа.

Таблица №2

Показатель	Образец №1	Образец №2
	(бензиновый двигатель)	(дизельный двигатель)
Цвет	Голубовато-мутный	Голубовато-мутный
Запах	Запах нефтепродуктов	Запах нефтепродуктов
Предполагаемое	Наличие ионов свинца	Наличие сажи
загрязняющее вещество		

Химический состав раствора бывает разным из-за различных примесей в нем. Датчик TDS- метр позволяет измерять концентрацию этих примесей. Из-за наличия этих веществ меняется запах и внешний вид раствора. В основе работы измерительного устройства используется возможность воды проводить электрический ток. Прибор производит электроны, создающие в жидкости электрический поле. затем он фиксирует количество ионов солей и других веществ, поскольку именно они влияют на силу току в жидкости. Все данные отображаются на дисплее.

Химический состав опытных образцов №1 и №2.

Таблица № 3

Компоненты	Объёмная доля в	Объёмная доля в	Токсичность
	карбюраторном	дизельном	
	двигателе, %	двигателе, %	
Азот N ₂	74-77	76-78	Нетоксичен
Кислород О2	0,3-8	2-18	Нетоксичен
Водород Н2	0-5,0	-	Нетоксичен
Водяной пар Н ₂ О	3-5,5	0,5-4	Нетоксичен
Диоксид	5-12	1-10	Нетоксичен
углерода СО2			
Оксид углерода	0,5-12	0,01-5	Токсичен
СО (угарный газ)			
Углеводороды	0,2-3	0,009-0,5	Токсичен
C_xH_y			
Альдегиды	0-2	0,001-0,009	Токсичен
Диоксид серы	0-0,002	0-0,03	Токсичен
SO_2			
Сажа, г/м ³	0-0,04	0,1-1,1	Канцерогены
Бензапирен, г/м ³	0,01-0,02	0-0,01	Канцерогены

Как видно из таблицы, состав выхлопных газов достаточно разнообразен и большая часть компонентов токсична. По химическому составу, а также характеру воздействия на организм человека их подразделяют на группы:

- ✓ <u>Нетоксичные вещества</u>(азот, кислород. водяной пар, углекислый газ и другие естественные компоненты атмосферного воздуха).
- ✓ <u>Токсичные</u> (оксид углерода или угарный газ)- продукт неполного сгорания топлива. Оксид углерода обладает наркотическим действием, раздражающе действует на кожу и слизистые оболочки, вызывает болезнь сердца.
- ✓ <u>Токсичные</u> (альдегиды). В отработавших газах содержатся формадельгид, акролеин и уксусный альдегид, которые раздражают органы зрения, дыхательные пути, поражают центральную нервную систему, обострение бронхиальной астмы.
- ✓ <u>Канцерогены</u> (сажа, бензапирен). Сажа как любая пыль действует на органы дыхания, но главная опасность заключается в том, что на ней адсорбируются канцерогенные вещества, возрастает риск заболеваний раком.
- 4. Биоиндикационное тестирование водных проб выхлопных газов.

Биоиндикация – оценка качества природной среды состояния её биоты. Биоиндикация основана на наблюдении за составом и численностью индикаторов.

Для биоиндикации использовали простейшие организмы инфузорию туфельку. Одинаковые объёмы культуры были помещены в водные пробы выхлопных газов. По результатам биотестирования выявлено,

что через 60 минут в пробах №1 и №2 мелкие тест-объекты перестали двигаться, крупные замедлили движение.

Таблица №4

Время интервала	Образец №1	Образец №2
	(карбюраторный	(дизельный двигатель)
	двигатель)	
Начало эксперимента	12 крупных тест-	11 крупных тест-
	объектов; много	объектов; много
	мелких; активное	мелких; активное
	движение	движение
Через 15 минут	10 крупных тест-	9 крупных тест-
	объектов; мелкие тест-	объектов; мелкие тест-
	объекты замедлили	объекты замедлили
	движение	движение
Через 30 минут	8 крупных тест-	7 крупных тест-
	объектов двигающихся;	объектов двигающихся;
	мелкие не двигаются	мелкие не двигаются
Через 60 минут	6 крупных тест-	5 крупных тест-
	объектов двигающихся;	объектов двигающихся;
	мелкие не двигаются	мелкие не двигаются
Через 1 сутки	Двигающихся крупных	Двигающихся крупных
	тест-объектов 4, мелких	тест-объектов 3, мелких
	нет	нет

5. Отбор проб загрязненного воздуха с помощью газоанализатора Принцип работы газоанализатора каталитического действия заключается в определении концентрации СО по количеству тепла, которое выделяется при дожигании пробы газа на раскаленной, каталитически активной платиновой спирали.

В качестве измерительной системы газоанализатора каталитического действия используется электрический мост, в плечи которого включены измерительная платиновая нить ,терм компенсационная эталонная платиновая нить, два постоянных резистора, а в диагональ — усилитель тока и измерительный прибор. Питание прибора осуществляется от стабилизированного источника постоянного тока, включение которого производится нажатием клавиши ВКЛ.

Данные замеров занесены в таблицу

Таблица № 5

Газы	Холостые	1000 об/мин.	2500 об/мин.	Замечания
	обороты			
СО	повышен	повышен	повышен	Повышен на
				всех
				оборотах
НС	норма	норма	норма	Около нормы
CO_2	низкий	низкий	низкий	Постоянно
				низкий
O_2	норма	норма	норма	Постоянно
				норма
CO	повышен	повышен	норма	Повышен на
				низких
				оборотах
НС	повышен	норма	норма	Повышен на
				низких
				оборотах
CO_2	низкий	норма	норма	Низкий на
				холостых
				оборотах
O_2	норма	норма	норма	Постоянно на
				холостом
CO	низкий	норма	норма	Низкий на
				холостом
НС	повышен	норма	норма	Повышен на
				холостом

O_2	Высокий	норма	норма	Около нормы
НС	повышен	повышен	повышен	Постоянно
				повышен

Заключение

В данном исследовательском проекте гипотеза исследования загрязнения воздуха и почвы выхлопными газами автотранспорта подтверждена и доказывает, что выхлопные газы – основной фактор отрицательного влияния автомобильного транспорта на человека и окружающую среду. Для снижения загазованности воздушной среды необходимо,ограничить количествовредных веществ, выделяемых каждымавтомобилем, т.е. установить нормы выбросов токсичных веществ с выхлопными газами. Соответствии автомобилей указанным стандартом (в частности, по содержанию оксида углерода и углеводородов в выхлопных газах) проверяют инспекторы ГИБДД.

Отмечу, что такое простое мероприятие, как регулировка двигателей, может резко снизить токсичность выхлопных газов.

В целях предотвращения детонации горючего в двигателях автомашин в него добавляют тетраэтилсвинец, который делает выхлопные газы особо токсичными. Поэтому необходимо провести замену указанного вещества не менее опасные, а также более стойкого к детонации бензина. При введении в топливо присадок, можно уменьшить количество веществ: сажи, альдегидов, оксида углерода и других. Так, для бензиновых двигателей самыми эффективными оказались смеси различных спиртов.

Перевод автомобилей на газ, приводит к тому, что в выхлопе газобаллонных автомобилей содержится в 3-4 раза меньше оксида углерода, нежели в выхлопе бензиновых двигателей. При загрузке в баллоны 300 л. сжиженного газа автобус способен пройти без заправки до 500 км. Если добавить к этому, что газ дешевле бензина, то достоинства газобаллонного автомобиля становятся еще более наглядными.

Список использованной литературы

- 1. Анисимов Е. Е. Исследование влияния выхлопных газов двигателя внутреннего сгорания на окружающую среду (Якутия) // Молодой ученый. 2014. № 21. С. 71–72. 2.
- 2. Вяткин М.Ф. О влиянии выхлопных газов автомобилей на здоровье человека.// Молодой ученый. 2015. № 10 (90). С. 87-88. URL: https://moluch.ru/archive/90/19172/
- Зайцева О. Ю. Вред выхлопных газов автомобилей // Экология и безопасность жизнедеятельности. 2010, № 8. С. 45.
 Интернет-ресурс :
- 4. Причины перехода на экологически чистые возобновляемые источники энергии. http://alternativenergy.ru/energiya/160-prichiny-kotorye-obuslovili-neobhodimost-perehoda-na-ekologicheski-chistye-vozobnovlyaemye-istochniki-energii.html